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Nonperiodic Long-Range Order for Fast-Decaying
Interactions at Positive Temperatures
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We present the first example of an exponentially decaying interaction which
gives rise to nonperiodic long-range order at positive temperatures.
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1. INTRODUCTION

Since the discovery of quasicrystals,®®’ there has been an interest in under-
standing their occurrence in statistical mechanics models of interacting
particles, see for example refs. 2, 18, 25, and 30. One would like to show
that a quasicrystalline phase occurs in appropriate models at sufficiently
low temperatures. We interpret this as the occurrence of ground states or
Gibbs states which possess a quasi-periodic, or more generally, a non-
periodic long-range order!!- 24 2%),

Up till now there only exist some partial results going in this direction.
Most of them have been obtained for lattice modeis, and here again we will
get a result of this type.

In classical lattice-gas models, every site of a regular lattice, Z¢, is
occupied by one of n different types of particles (equivalently, by +1 or
—1 in spin 1/2 models). Configurations of such models are therefore
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elements of Q = {1,.., n} 7. Particles interact through possibly many-body
potentials which are represented by functions @ ,:Q, — R for all finite
AcZ% where Q4 ={l,.,n}". We assume that the @, are translation
invariant and decay exponentially in N(A), the number of sites in 4, and
in fact in what we need for the next section, even in diam(A). The formal
Hamiltonian can be therefore written as H,=3 , ®,. By ground states
of H,, we mean translation-invariant probability measures supported by
configurations with minimal energy density. Ground states are zero-tem-
perature limits of translation-invariant Gibbs states (equilibrium states).
Following are the main results which are known to us, concerning
non-periodic order of ground states and Gibbs states of lattice models:

(1) For finite-range interactions, non-periodic long-range order in
the ground state can occur in dimension 2 and higher, but not in dimen-
SiOl'l 1.(19, 25, 26)

(2) In dimension 1, non-periodic long-range order in the ground
state can occur for infinite-range, but arbitrarily fast decaying inter-
actions,'! 129

(3) In dimension 2, non-periodic long-range order in the ground
state can occur for nearest-neighbor interactions,!'®20:2223.25.27) At
positive temperatures in such models, the best result proven so far is the
existence of an infinite sequence of temperatures with the period doubling
of periodic Gibbs states.'*"

(4) At positive temperatures, non-periodic long-range order can
occur for slowly decaying (summable) interactions (in arbitrary dimen-
sions). These interactions can be finite-body, or even pair interactions.‘® '@

In this note we want to present an example and a general construction
where non-periodic long-range order occurs at positive temperatures for
fast (exponentially) decaying interactions in 3 dimensions. Before entering
into details of the argument, which is based on ref. 14, and is indeed more
or less a corollary of that paper, we want to make a few comments.

(1) Although at zero temperature there exists an important qualita-
tive difference between strictly finite-range interactions and interactions
which are of infinite range but have a fast decaying tail, this qualitative
difference is not expected to persist at positive temperatures.

(2) There is a conjecture that two-dimensional lattice gas models
with short-range interactions always have at most finitely many (periodic)
Gibbs states, which rules out the possibility of non-periodic long-range order.
For some arguments and results supporting this conjecture, see refs. 7, 31,
and 32. It would mean that our results could not be true in 2 dimensions.
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(3) A limitation of our result is that we prove the existence of non-
periodic structures in only one direction. We conjecture that this limitation
is not really necessary, but our method does not give the stronger result
(non-periodic order in three directions at the same time).

2. THE EXAMPLE

Let us recall a definition of the Thue-Morse state. We begin by con-
structing a one-sided Thue-Morse sequence. We put + at the origin
and perform successively a substitution: + - + —, — — — +, obtaining
+, +—, +——+, +——+—++ —,... We get a one-sided sequence
{ XD}, i20. We define XpyeQ={+, —}“ by setting Xpp(i)=
Xy (—i—1) for i <.

Let T be a translation operator, ie, T:Q2 - Q, T(X)(i)=X(i—1),
XeQ. Let Gy, be the closure (in the product topology of the discrete
topology on {+, —}) of the orbit of X, by translations, ie., Gy, =
{T"(Xar)» n=0} . 1t can be shown that G, supports exactly one transla-
tion-invariant probability measure z,, on 2.9'%19 4 is the only ground
state of a certain fast decaying four-spin interaction!® (see (1) below).

We will combine this construction of ref. 13 with the result of ref. 14
on “stratified” Gibbs measures. Thus in one of the directions we start by
choosing the interaction of ref. 13, while in the other two directions we
have the nearest-neighbor ferromagnetic interaction. This model has as
ground-state configurations the “stratified” (or stacked) Thue-Morse
sequences, that is they are Thue-Morse sequences (i.e., elements of G,,) in
one direction, and translation-invariant in the other two directions. Thus in
the terminology of ref. 14 we are in a stratified situation: even though the
interaction is translation invariant, ground-state configurations building up
the single translation-invariant ground-state measure are nonperiodic
(Thue-Morse) layered structures.

Let us mention some other works considering low-temperature behavior
of models with periodic stratified ground states. The phase diagram of the
ANNNI model was investigated in refs. 4, 5 and 11. General three-dimen-
sional stratified models were discussed in ref. 12 and some related results
were recently obtained in a model with a layered magnetic field."'”

It has been known for some time that ground-state configurations
which have no energy barrier between them in one dimension (example:
the kink states in the one-dimensional Ising model) can give rise to corre-
sponding Gibbs states in three dimensions. These Gibbs states have the
same structure in one direction and are ferromagnetically ordered in the
other two directions (example: the Dobrushin states in the three-dimen-
sional Ising model'®). The ideas of Dobrushin have been extended to more
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general situations in ref. 14, and here we observe that these recent results
can be applied to the non-periodic Thue-Morse ground-state configura-
tions studied in ref. 13. In one dimension, we will consider the sequences
supporting the translation-invariant Thue-Morse measure pu,,, (which is
the only translation-invariant ground-state measure). The energy barriers
between them may be arbitrarily small, but this does not need to matter;
in fact, as we have just remarked, even for ground states with zero-energy
barriers, it is the case that adding ferromagnetic nearest-neighbor terms in
two extra dimensions can stabilize them. In the general approach of ref. 14,
the result is that the stratified structures appear, not necessarily for the
original interaction, but for a small (weak and exponentially decaying) per-
turbation thereof. In our case it is to be expected that in fact such a perturba-
tion will be needed. We will start with the Hamiltonian H,, + H, where

Hpy= Z Z Z J(r’p)(ai+ai+(21’)el)2

ieZ® r=0 p=0

X(0i+(2r+1)2ﬂe,+Ui+(2r+2)2ﬂe|)2 (1)
Hp= Z J(Ui0i+e2+ar0'i+e3) (2)
ieZ?

where ¢, is the unit vector in the nth direction, o,= +1 is a spin variable
and J(r, p)>0 and decays to zero exponentially fast when distances
between interacting particles increase.

The Thue-Morse layers are ground-state configurations of H,, + Hp.
We need to take care against the possibility that there are periodically
layered structures which have more low-energy excitations and therefore
compensate for having a higher energy at zero temperature. To illustrate
the phenomenon we need to control, assume for the moment that in the
first sum, only the term J(0, 0) in the above expression is non-zero. That is,
one excludes local configurations with three successive pluses or minuses.
Then, in the horizontal direction, next to the Thue—Morse sequences, there
are many more ground states, and it is easy to see that, for example, the
3-periodic structures — — + or + + — have more lowest energy excitations
(87 which is the energy of overturning one spin without creating three
successive pluses or minuses) than (and hence in the terminology of ref. 3
dominate) the Thue-~Morse ones. This effect explains the necessity of having
an extra interaction term in our theorem, to make low-temperature Gibbs
measures “Thue-Morse-like” in the first direction.

In the following, we will consider one-dimensional interactions & =
{®D,:Q2,— R} such that for every Xe Q,, |® (X)| < eV for some ¢,
w>0. We denote by #““ the family of such interactions. If X is a



Nonperiodic Long-Range Order for Fast-Decaying Interactions 1445

ground-state configuration, then by a Gibbs state which is a small pertur-
bation of it we mean a Gibbs state p, such that p(P)) <e&(T), where P
is a projection on configurations which are different from X at a lattice site
a and & T)— 0, when the temperature 7 — 0.

The subsequent theorems follow from the Main Theorem of ref. 14.
Proofs and more technical details one can find there.

Theorem 1. Fix some J>0 in (2) (e.g., J=1). Then there exist
strictly positive constants C, ¢ and T, such that the following is true: For
each ¢ <&, and w= Ce ~*"7 with T'< T, there exists a map

e%pe,w__) U ”8,,(0
ele(g,e+w) (3)

Hy— H,

such that for each ground-state configuration X of H*= H,+ H there
exists a Gibbs state u, of H= H, + H, which is a small perturbation of X,

Actually, one can give an explicit formula for the perturbative
Hamiltonian H, — H, in terms of quickly converging cluster expansion
series, whose (small!) terms change only slowly with H, and H.

Our aim is to construct a translation-invariant Gibbs state of H
such that it has only non-periodic Gibbs states in its extremal decomposi-
tion. In order to do so we would like A* to have a unique ground-state
measure supported by non-periodic ground-state configurations (Thue-
Morse stratified sequences in our example). The following inverse mapping
type theorem assures us of this (the Lipschitz property is rather obvious if
one inspects the explicit formulas given in ref. 14 for H,).

Theorem 2. With the notation of Theorem 1, the map (3) is
Lipschitz continuous in the sense that if H,— He #* * with &' <¢,, then
H,—H e #*“ with " =¢'w. In particular, if we choose &, such that
& —&; > w, then for every H,e #% “, there exists a preimage Hoe #
such that there is one-to-one correspondence between stratified ground-
state configurations of H* and stratified Gibbs states of H.

Now we put H* = H, + Hp and use Theorem 1 and 2 to obtain non-
periodic Thue-Morse Gibbs states of H, which are small perturbations of the
Thue-Morse stratified ground-state configurations. Therefore, there exists a
translation-invariant Thue-Morse Gibbs state, p,,,, which has only non-
periodic (Thue—Morse) Gibbs states in its extremal decomposition.

Pra is a Gibbs state which is extremal among the translation-invariant
Gibbs states of H. We expect that H does not have any other translation-
invariant Gibbs states. However, we cannot exclude at the moment some
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“exotic” translation-invariant states which do not arise from stratified
configurations.

3. GENERALIZATIONS AND OPEN PROBLEMS

It was shown by Aubry and Radin!'***) that any strictly ergodic measure
on  is a unique ground state of a certain one-dimensional, many-body,
infinite-range but arbitrarily fast decaying interaction. Our construction
shows the existence of another interaction of the same type such that when
adding ferromagnetic interactions in two extra dimensions one obtains a
model with a low-temperature Gibbs state which is a small perturbation of
the original measure.

As we have already discussed, we do not expect the nonperiodic order
for the original Thue-Morse interaction. A likely possibility here is the
existence of an infinite sequence of temperatures, decreasing to zero, at
which the periods of the corresponding extremal Gibbs states grow. It is an
open problem to construct a two-body (or even finite-body) interaction
(finite range or exponentially decaying) without periodic ground-state
configurations and with a nonperiodic Gibbs state.
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